Skip to content

IPython

Using PyQt with QtAgg in Jupyterlab – IV – simple PyQt and MPL application with background worker and receiver threads

As you read this post you are probably interested in Machine Learning [ML] and hopefully in Linux systems as a ML-platform as well. This post series wants to guide you over a bridge between the standard tool-set of Python3 notebooks in Jupyterlab for the control of ML-algorithms and graphical Qt-applications on your Linux desktop. The objective is to become more independent of some limitations of the browser based Jupyterlab notebooks.

One aspect is the use of graphical Qt-based control elements (as e.g. buttons, etc.) in desktop windows. On the other hand we want to use background threads to produce (ML) data which we later, e.g. during training runs, display in Qt windows. Background threads will also enable us to run smaller code in other cells of our notebook during long ML-runs. We are also confident that we can keep up the interactivity of both our Qt windows and Jupyterlab during such runs.

We will later use the callback machinery of Keras based ML-runs to produce ML-data and other information about a running ML-algorithm in the background of Jupyterlab. These data will be sent to Matplotlib- and Qt callback-functions in Jupyterlab which then update Qt windows.

Knowledge gained so far …

During the previous posts we have gathered enough information to now build an example PyQt application, which utilizes two background threads.

We have seen that QtAgg, a backend bridge for producing Matplotlib [MPL] plots in Qt windows, can be used for full fledged PyQt applications, too. In the first post we became familiar with some useful Qt-widgets and the general structure of Qt-Apps.

In the 2nd and 3rd posts we have learned that both Matplotlib figures and Qt-widgets must be controlled by the main thread associated with our Jupyterlab notebook. A Qt event loop is started in this thread by QtAgg for us. We have also noted that background threads controlled by QThread-objects can send signals which end up serialized in the Qt event queue of the main thread. From there they can be handled asynchronously, but in timely order by callbacks, which in turn update Qt-widgets for MPL-plots and other information. The 3rd post discussed a general pattern to employ both a raw data producing worker thread and a receiver thread to prepare the data for eventual foreground handling.

Objective of this post

In this post I will discuss a simple application that produces data with the help of two background threads according to the pattern discussed in the previous post. All data and information will periodically be sent from the background to callbacks in the main thread. Although we only use one main Qt window the structure of the application includes all key elements to serve as a blueprint for more complex situations. We will in particular discuss how to stop the background jobs and their threads in a regular way. An interesting side topic will be how one captures print output to stdout from background jobs.

Level of this post: Advanced. Some experience with Jupyterlab, QtAgg, Matplotlib and (asynchronous) PyQt is required. The first three posts of this series provide (in my opinion) a quick, though steep learning curve for PyQt newbies.

Application elements

Our PyQt application will contain three major elements in a vertical layout:

  • Two buttons to start and stop two background threads. These threads provide data for a sine-curve with steadily growing frequency and some related information text.
  • A Qt-widget for a Matplotlib figure to display the changing sine curve.
  • A series of QTextEdit widgets to display messages from the background and from callbacks in the foreground.

Our pattern requires the following threads: A “worker thread” periodically creates raw data and puts them into Python queues. A “receiver thread” reads out the queues and refines the data.

In our case the receiver thread will add additional information and data. Then signals are used to communicate with callbacks in the main thread. We send all data for widget and figure updates directly with the signals. This is done for demonstration purposes. We could also have used supplemental data queues for the purpose of inter-thread data exchange. For plotting we use Matplotlib and the related Figure.canvas-widget provided by QtAgg.

So, we have a main thread with a Qt event loop (and of course a loop for Jupyterlab REPL interaction) and two background threads which perform some (simple) asynchronous data production for us.

Our challenge: Qt and Matplotlib control with Python code in a Jupyterlab notebook

The application looks pretty simple. And its structure will indeed be simple. However, as always the devil is an expert for faults in details. In our particular situation with Jupyterlab we need to get control over the following tasks:

  • setup and start of two background threads – a worker thread and a receiver thread,
  • association of worker and receiver objects to the named threads with a respective affinity,
  • asynchronous inter-thread communication and data exchange via signals,
  • updates of Qt-widgets and integrated Matplotlib figures,
  • spinning the Qt-event-loop in the main thread to ensure quick widget updates,
  • a regular stop of thread activities and a removal of thread-related objects,
  • checking interactivity of both the Jupyterlab and the Qt-interface,
  • stability of the plot-production against potentially conflicting commands from the main thread.

All via code executed in cells of a Python notebook. An additional topic is:

  • capturing print-commands in the background and transmission of the text to the foreground.
Read More »Using PyQt with QtAgg in Jupyterlab – IV – simple PyQt and MPL application with background worker and receiver threads

Using PyQt with QtAgg in Jupyterlab – II – excursion on threads, signals and events

In the first post of this series on PyQt

Using PyQt with QtAgg in Jupyterlab – I – a first simple example

we have studied how to set up a PyQt application in a Jupyterlab notebook. The key to getting a seamless integration was to invoke the QtAgg-backend of Matplotlib. Otherwise we did not need to use any of Matplolib’s functionality. For our first PyQt test application we just used multiple nested Qt-widgets in a QMainWindow to create a simple, but interactive and instructive application in a Qt-window on the desktop.

So, PyQt works well with QtAgg and IPython. We just construct and show a QMainWindow; we need no explicit exec() command. An advantage of using PyQt is that we get moveable, resizable windows on our Linux desktop, outside the browser-bound Jupyterlab environment. Furthermore, PyQt offers a lot of widgets to build a full fledged graphical application interface with Python code.

But our funny PyQt example application still blocked the execution of code in other notebook cells! It just demonstrated why we need background threads when working with Jupyterlab and long running code segments. This would in particular be helpful when working with Machine Learning [ML] algorithms. Would it not be nice to put a task like the training of an ML algorithm into the background? And to redirect the intermediate output after training epochs into a textbox in a desktop window? While we work with other code in the same notebook?

The utilization of background threads is one of the main objectives of this post series. In the end we want to see a PyQt application (also hosting e.g. a Matplotlib figure canvas) which displays data that we created in a ML background job. All controlled from a Jupyterlab Python notebook.

To achieve this goal we need a general strategy how to split work between foreground and background tasks. The left graphics indicates in which direction we will move.

But first we need a toolbox and an overview over possible restrictions regarding Python threads and PyQt GUI widgets. In this post we, therefore, will look at relevant topics like concurrency limitations due to the Python GIL, thread support in Qt, Qt’s approach to inter-thread communication, signals and once again Qt’s main event loop. I will also discuss some obstacles which we have to overcome. All of this will give us sufficient knowledge to understand a concrete pattern for a workload distribution which I will present in the next post.

Level of this post: Advanced. Some general experience with asynchronous programming is helpful. But also beginners have a chance. For a ML-project I myself had to learn on rather short terms how one can handle thread interaction with Qt. In the last section of this post you will find links to comprehensive and helpful articles on the Internet. Regarding signals I especially recommend [1.1]. Regarding threads and the helpful effects of event loops for inter-thread communication I recommend to read [3.1] and [3.2] (!) in particular. Regarding the difference between signals and events I found the discussions in [2.1] helpful.

Read More »Using PyQt with QtAgg in Jupyterlab – II – excursion on threads, signals and events

Using PyQt with QtAgg in Jupyterlab – I – a first simple example

As my readers know I presently study how to work with background jobs for plot and information updates in Jupyterlab. The reason for this endeavor is that I want to organize my work with ML- training and long evaluation runs a bit differently in the future. In particular I want to have the freedom of working in other regions (other cells) of a Python3 notebook while the long running jobs do their work in the background. This includes that these other cells may also start major background jobs or run code in parallel to the background tasks.

After some experiments I think that for my particular purposes a combination of QTAgg, Matplotlib and PyQt provides the best solution.

What I like about PyQt is its very clear structure. And you can use QTextEdit-widgets as a kind of canvas for print output. And e special Figure-widget for Matplotlib. Using PyQt opens up for many new options to build nice application windows around your ML-algorithms on your Linux desktop. Which will be extremely valuable for presentations or customer end applications.

In this post series I will present a few test applications that cover a lot of topics around Qt-widgets, widget- communication, threads, signals and events. We will start with a simple foreground application. Then we turn to threads and signals between threads. Afterward we integrate Matplotlib and deepen our understanding of handling threads in PyQt applications for Matplotlib and print output.

Objectives of this post

This first post translates a question posed at Stackoverflow [1] into a more complex example. With it I want to show

  • how to set up your own PyQt application in a Jupyterlab (Python) environment and display it directly as a Qt-window on your desktop,
  • how to create a nested PyQt “sub-window”-structure with the help of a PyQt-window layout,
  • how to react to events,
  • how to give a central widget its own paintEvent and a painter for drawing graphical primitives,
  • how to “hide” a widget element,
  • how you control which of your graphical primitives is drawn and which not.

This application does not yet use background jobs. So, due to its present structure it will block running any Python code in other notebook cells while we have some action going on in the application’s PyQt-widgets.

We are going to change this during the course of this post series. For the time being my main objective is only to show that PyQt can be used at all with QtAgg in Jupyterlab notebooks.

My “application” is a bit stupid in so far as 2 main button only trigger a continuous dynamic painting of a red line from a sub-window’s center to the mouse pointer or to the corners of their surrounding sub-window areas. It is simple and trivial, but it nevertheless gave me some fun constructing it.

If you like, you may think of the red line a “laser beam” shooting at the mouse pointer or the frame corners. I will use this term below when I discuss the functionality. There is also a video link at the end of the post.

All of this has obviously nothing to do with ML, yet, but it gives you a feeling how we can compose PyQt applications in a Jupyterlab environment. In other posts of this blog we will use our acquired PyQt knowledge to put Keras based ML-machinery into our own graphical interfaces on the Linux desktop. I.e. outside the browser tab for Jupyterlab.

Level of this post: In parts advanced. Not because the example is so complicated. Nevertheless some background information on Qt-Window layouts and Widgets is required. Good introductions are given here. Details for all Qt-widgets that I use below can be found at https://wiki.qt.io/.

But note: For a Jupyterlab Python notebook with an QtAgg-backend you do not need the whole app.exec() stuff described in the tutorial examples.

Read More »Using PyQt with QtAgg in Jupyterlab – I – a first simple example

Jupyterlab, matplotlib, dynamic plots – II – external Qt-windows and figure updates from foreground jobs

The work on this post series has been delayed a bit. One of my objectives was to use background jobs to directly redraw or to at least trigger a redrawing of Matplotlib figures with backends like Qt5Agg. By using background jobs I wanted to circumvent a blocking of code execution in other further Juypter notebook cells. This would to e.g. perform data analysis tasks in the foreground whilst long running Python jobs are executed in the background (e.g. jobs for training a ML-algorithm). This challenge gave me some headache in the meantime. I just say one word which tells experienced Python PyQt and Matplotlib users probably enough: thread safety.

In this post series we focus on the QtAgg backend first. Well, I found a thread safe solution for dynamic plot updates from background jobs in the context of Jupyterlab and QtAgg. But it became much more complicated than I had expected. It involves a combination of PyQT and Matplotlib. For anything simpler than that you as the user, who controls what is done in a notebook, have to be very (!) cautious.

A growing nest of problems which have to be solved

There are some key problems which we must must solve:

  1. Interactive mode of Matplotlib with the Qt(5)Agg-backend does not support automatic dynamic canvas updates of Matplotlib figures.
  2. Interactive mode together with Qt(5)Agg has negative side effects on the general behavior of Python notebooks in Jupyterlab.
  3. Jupyterlab/IPython has to use its CPU time carefully and must split it between user interactions and GUI processing. This splitting is done in the controlling (event based) loop of your Jupyter notebook, i.e. in the main thread. Whatever other background threads you may start … It is the main loop there which controls the Matplotlib backend interaction with the GUI-data-processing for screen output and the Matplotlib handling of events that may have happened on the displayed figure (GUI-Loop).
  4. Most GUI related frameworks like PyQt and Matplotib (e.g. with a QtAgg-backend) are not thread safe. It is pretty easy to crash both Matplotlib and PyQt related jobs by firing certain update command to the same figure from two running threads.
  5. Drawing actions of very many of the so called Matplotlib “artists” and other contributors to continuous updates of Matplotlib figures and as well as of PyQt elements most often must take place in the main thread. In our case: In the main loop of Jupyterlab, where you started your Matplotlib figures or even a main PyQT-window on your (Linux) desktop.
  6. The draw commands must in almost all practically relevant cases be processed sequentially. This requires a blocking communication mechanism between threads. Otherwise you take a risk of race conditions and complicated side-effects, which all may lead to errors and even may even crash of the IPython kernel. I experienced this quite often the last days.
  7. Starting side tasks with asyncio in the main asyncio loop of the Jupyter notebook will not really help you either. In some respects and regarding Matplotlib or PyQt asyncio jobs are very comparable to threads. And you may run across the same kind of problems. But I admit that for a careful user and only synchronized requests you may get quite a long way with asyncio. We will study this on our way.

This all sounds complicated – and it indeed is. But you need not yet understand all of the points made above. We have to approach a working Qt5-based solution for non-cell-blocking Python plot jobs in the background of a Juypterlab notebook step by step over some more posts. And I hope your knowledge will grow with every post. 🙂

Topics of this post

In the current post we will use the QtAgg-backend to display Matplotlib Qt5-windows on a (KDE) Linux desktop.

Note: Using “QtAgg” is the preferred mode of invoking the Qt5/6 backend. See the code below. It translates to the available version, in my case to “Qt5Agg“. I therefore will use the term Qt(5)Agg below.

We will try to update two Matplotlib figures, each in its own Qt5-window, and their sub-plots dynamically from one common loop in a notebook cell. Already this simple task requires special commands as Matplotlib’s interactive mode is only partially supported by Qt(5)Agg. In addition we will also come across a dirty side effect of QtAgg on the general behavior of notebooks in Jupyterlab 4.0.x.

Level of this post: Beginner. Python3, Jupyterlab and Matplotlib should be familiar. And you, of course, work with Linux

Windows for Matplotlib figures outside Jupyterlab and the browser?

If you work as a non-professional in the field of Machine Learning the probability is high that you use Jupyterlab with Python3 notebooks as a convenient development environment. In the first post of this series I have listed up some relevant Matplotlib graphics backends which we can use within Jupyterlab to dynamically update already existing plot figures with graphical representations of new or changed data. A practical application in the context of Machine Learning is e.g. to update plots of metric and other data in your own way during the training of Artificial Neural Networks [ANNs].

While you may be used to display Matplotlib graphics inside a Jupyter notebook (as the output of a certain cell) it may be much more convenient to get a visualization of continuously changing information in (Linux) desktop windows outside the notebook, well, even outside the browser. You may want such external windows even if you accept that the Python code executed in a notebook cell is blocking the use of other cells before all cells commands have been executed.

One reason could be that during ML training runs or other long calculation periods you may want to minimize your Jupyterlab window and work with another application. Another situation could be that the graphics window shall be updated from multiple background tasks of your notebook. Or you may just want to avoid scrolling forth and back in your notebook.

This post shows how we can use the Matplotlib Qt5-backend on a Linux/KDE system for this purpose. The basic idea is to support relatively fast changes of plot figures which are independently placed on the KDE screen outside the Jupyterlab interface in a browser.

Objectives of this post

The following graphics illustrates our wishes. It shows two Qt5 windows aside a browser window with a Jupyterlab tab.

 

The Qt5-windows contain figures with sub-plots (axis-frames). All sub-plots show different data series. All displayed data will later change with some frequency – we want to get a periodic update of the plots from a common update loop. All in all we will study the following aspects:

  • Creation of the external windows on the desktop with Matplotlib and Qt(5)Agg.
  • Initially filling and singular updates of the sub-plots with the help of code from various notebook cells.
  • Periodical update of all figures and their subplots from a common loop in a notebook cell.

Below I will discuss the necessary steps with the help of a simple example.

Read More »Jupyterlab, matplotlib, dynamic plots – II – external Qt-windows and figure updates from foreground jobs