Skip to content

independent Gaussians

Contours of a bivariate normal distribution

Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix

In other posts of this blog I have discussed the general form of a Bivariate Normal Distribution [BVD] . For a centered Cartesian coordinate system [CCS] (see below), we have already seen the following: In this post I will give you a recipe to explicitly construct two random variables X, Y of a BVD from 1-dimensional Gaussians Z1, Z2 with… Read More »Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix

Bivariate Normal Distribution

Bivariate normal distribution – derivation by linear transformation of a random vector for two independent Gaussians

In an another post on properties of a Bivariate Normal Distribution [BVD] I have motivated the form of its probability density function [pdf] by symmetry arguments and the underlying probability density functions of its marginals, namely 1-dimensional Gaussians. In this post we will derive the probability density function by following the line of argumentation for a general Multivariate Normal Distribution… Read More »Bivariate normal distribution – derivation by linear transformation of a random vector for two independent Gaussians

contour ellipsoids of a projected MND

Multivariate Normal Distributions – I – Basics and a random vector of independent Gaussians

This post series is about mathematical aspects of so called “Multivariate Normal Distributions“. In respective literature two abbreviations are common: MNDs or MVNs. I will use both synonymously. To get an easy access, I want to introduce a MND as the result of a linear transformations applied to random vectors whose components can be described by independent 1-dimensional normal distributions.… Read More »Multivariate Normal Distributions – I – Basics and a random vector of independent Gaussians