Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Skip to content

Dev tools / equipment

Jupyterlab – resolve error messages regarding iopub_data_rate_limit

When I worked with some ML-based text evaluation I had run across an output limit rate on the notebooks output rate: iopub_data_rate_limit : (bytes/sec) Maximum rate at which stream output can be sent on iopub before they are limited. I had changed it by a factor of 10 from the standard value in a file ~/.jupyter/jupyter_notebook_config.py in my home-directory on… Read More »Jupyterlab – resolve error messages regarding iopub_data_rate_limit

Jupyterlab, matplotlib, dynamic plots – II – external Qt-windows and figure updates from foreground jobs

The work on this post series has been delayed a bit. One of my objectives was to use background jobs to directly redraw or to at least trigger a redrawing of Matplotlib figures with backends like Qt5Agg. By using background jobs I wanted to circumvent a blocking of code execution in other further Juypter notebook cells. This would to e.g.… Read More »Jupyterlab, matplotlib, dynamic plots – II – external Qt-windows and figure updates from foreground jobs

Jupyterlab, Python3, asyncio – asynchronous tasks in a notebook background thread

Jupyterlab and IPython are always good for some surprises. Things that work in a standard Python task in Eclipse or at the prompt of a Linux shell may not work in a Python notebook within a Jupyterlab environment. One example where things behave a bit differently in Jupyterlab are asynchronous tasks. This post is about starting and stopping asynchronous tasks… Read More »Jupyterlab, Python3, asyncio – asynchronous tasks in a notebook background thread

Jupyterlab, matplotlib, dynamic plots – I – relevant backends

When we work with Deep Neural Networks on limited HW-resources we must get an overview over CPU- and VRAM-consumption, training progress, change of metrical variables of our network models, etc. Most of us will probably want to see the development of our system- and model-related variables in a graphical way. All of this requires dynamic plots, which are updated periodically… Read More »Jupyterlab, matplotlib, dynamic plots – I – relevant backends