Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Skip to content

learning rate

Short ResNet training on CIFAR10 over 21 epochs

AdamW for a ResNet56v2 – V – weight decay and cosine shaped schedule of the learning rate

In this post series we try to find methods to reduce the number of epochs for the training of ResNets on image datasets. Our test case is CIFAR10. In this post we will test a modified cosine shaped schedule for a systematic and fast reduction of the learning rate LR. This supplements the approaches described in previous posts of this… Read More »AdamW for a ResNet56v2 – V – weight decay and cosine shaped schedule of the learning rate

AdamW for a ResNet56v2 – III – excursion: weight decay vs. L2 regularization in Adam and AdamW

A major topic of this post series is the investigation of methods to reduce the number of required training epochs for ResNets. In particular with respect to image analysis. Our test case is defined by a ResNet56v2 neural network trained on the CIFAR10 dataset. For intermediate results of numerical experiments see the first two posts During the last week I… Read More »AdamW for a ResNet56v2 – III – excursion: weight decay vs. L2 regularization in Adam and AdamW

AdamW for a ResNet56v2 – II – linear LR-schedules, Adam, L2-regularization, weight decay and a reduction of training epochs

This series is about a ResNetv56v2 tested on the CIFAR10 dataset. In the last post AdamW for a ResNet56v2 – I – a detailed look at results based on the Adam optimizer we investigated a piecewise constant reduction schedule for the Learning Rate [LR] over 200 epochs. We found that we could reproduce results of R. Atienza, who had claimed… Read More »AdamW for a ResNet56v2 – II – linear LR-schedules, Adam, L2-regularization, weight decay and a reduction of training epochs

AdamW for a ResNet56v2 – I – a detailed look at results based on the Adam optimizer

This post requires Javascript to display formulas! The last days I started to work on ResNets again. The first thing I did was to use a ResNet code which Rowel Atienza has published in his very instructive book “Advanced Deep Learning with Tensorflow2 and Keras” [1]. I used the code on the CIFAR10 dataset. Atienza’s approach for this test example… Read More »AdamW for a ResNet56v2 – I – a detailed look at results based on the Adam optimizer