Skip to content

Cholesky decomposition

Ellipses constructed from elements of a matrix defining a quadratic form

Ellipses via matrix elements – II – numerical tests of formulas

During the last posts, I have discussed properties of ellipses and ways to (re-) construct them from elements of a symmetric, invertible and positive-definite (2×2)-matrix, which defines a quadratic form. In the context of Machine Learning we often have to determine confidence ellipses from elements of a numerically determined variance-covariance matrix of statistical bivariate vector-distributions. Formulas relating the geometric properties… Read More »Ellipses via matrix elements – II – numerical tests of formulas

Cholesky decomposition of an ellipse-defining symmetric matrix

An ellipse can be defined via a symmetric, invertible and positive-definite (2×2)-matrix Aq. Such a matrix provides a quadratic form which in turn correlates the components of position vectors to points on an ellipse. This post shows that a Cholesky decomposition of the inverse of Aq provides a method to create an ellipse from a simple set of vectors which… Read More »Cholesky decomposition of an ellipse-defining symmetric matrix

Contour ellipses from Cholesky decomp ot various covariance matrices

Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

In my last post about Bivariate Normal Distributions [BVD] I have discussed why contour lines of a BVD’s probability density function [pdf] are concentric ellipses. These contour ellipses are defined by constant values of the so called Mahalanobis distance. In addition, I have discussed a method to create these ellipses from values of the elements of the BVD’s (variance-) covariance… Read More »Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

Contours of a bivariate normal distribution

Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix

In other posts of this blog I have discussed the general form of a Bivariate Normal Distribution [BVD] . For a centered Cartesian coordinate system [CCS] (see below), we have already seen the following: In this post I will give you a recipe to explicitly construct two random variables X, Y of a BVD from 1-dimensional Gaussians Z1, Z2 with… Read More »Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix