Skip to content

BVD

BVD contour ellipses

Bivariate Normal Distribution – Mahalanobis distance and contour ellipses

I continue with my posts on Bivariate Normal Distributions [BVDs]. In this post we consider the exponent of a BVD’s probability density function [pdf]. This function is governed by a central matrix Σ-1, the inverse of the variance-covariance matrix of the BVD’s random vector. We define the so called Mahalanobis distance dm for BVD vectors. A constant value of the… Read More »Bivariate Normal Distribution – Mahalanobis distance and contour ellipses

Contours of a bivariate normal distribution

Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix

In other posts of this blog I have discussed the general form of a Bivariate Normal Distribution [BVD] . For a centered Cartesian coordinate system [CCS] (see below), we have already seen the following: In this post I will give you a recipe to explicitly construct two random variables X, Y of a BVD from 1-dimensional Gaussians Z1, Z2 with… Read More »Bivariate normal distribution – explicit reconstruction of a BVD random vector via Cholesky decomposition of the covariance matrix

Bivariate Normal Distribution

Bivariate normal distribution – derivation by linear transformation of a random vector for two independent Gaussians

In an another post on properties of a Bivariate Normal Distribution [BVD] I have motivated the form of its probability density function [pdf] by symmetry arguments and the underlying probability density functions of its marginals, namely 1-dimensional Gaussians. In this post we will derive the probability density function by following the line of argumentation for a general Multivariate Normal Distribution… Read More »Bivariate normal distribution – derivation by linear transformation of a random vector for two independent Gaussians