Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Skip to content

eremo

ResNet56V2 Convergence within epoch 20

AdamW for a ResNet56v2 – VI – Super-Convergence after improving the ResNetV2

In previous posts of this series I have shown that a Resnet56V2 with AdamW can converge to acceptable values of the validation accuracy for the CIFAR10 dataset – within less than 26 epochs. An optimal schedule of the learning rate [LR] and optimal values for the weight decay parameter [WD] were required. My network – a variation of the ResNetV2-structure… Read More »AdamW for a ResNet56v2 – VI – Super-Convergence after improving the ResNetV2

CAE generated face on background of a MND

Latent space distribution of a CAE for face images – I – unenforced Multivariate Normal Distributions

The analysis of face images by a trained Autoencoder and the generation of face images from statistical vectors is a classical task in Machine Learning. In this post series I want to clarify the properties of vector distributions for face images generated by a trained standard Convolutional Autoencoder [CAE] in its latent space. The dataset primarily used is the CelebA… Read More »Latent space distribution of a CAE for face images – I – unenforced Multivariate Normal Distributions

Multivariate Normal Distributions – IV – Spectral decomposition of the covariance matrix and rotation of the coordinate system

In the preceding posts of this series we have considered a comprehensible definition and basic properties of a non-degenerate “Multivariate Normal Distribution” of vectors in the ℝn [N-MND]. In this post we will make a step in the direction of a numerical analysis of some given finite vector distribution with properties that indicate an underlying N-MND. We want to find… Read More »Multivariate Normal Distributions – IV – Spectral decomposition of the covariance matrix and rotation of the coordinate system

Concentric surfaces of ellipsoids

Multivariate Normal Distributions – III – Variance-Covariance Matrix and a distance measure for vectors of non-degenerate distributions

In previous posts of this series I have motivated the functional form of the probability density of a so called “non-degenerate Multivariate Normal Distribution“. In this post we will have a closer look at the matrix Σ that controls the probability density function [pdf] of such a distribution. We will show that it actually is the covariance matrix of the… Read More »Multivariate Normal Distributions – III – Variance-Covariance Matrix and a distance measure for vectors of non-degenerate distributions