Skip to content

contour ellipses

Confidence ellipses based on covariance matrix

Compute confidence ellipses – I – simple method based on the Pearson correlation coefficient

This post was motivated by a publication of Carsten Schelp [1]. Actually, a long time ago. I used his results in 2021, when I had to plot confidence ellipses during the analysis of statistical (multivariate) vector distributions produced a Machine Learning algorithm. So, all acknowledgements belong to Schelp’s work. However, his ideas have also triggered some of my own efforts… Read More »Compute confidence ellipses – I – simple method based on the Pearson correlation coefficient

Contour ellipses from Cholesky decomp ot various covariance matrices

Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

In my last post about Bivariate Normal Distributions [BVD] I have discussed why contour lines of a BVD’s probability density function [pdf] are concentric ellipses. These contour ellipses are defined by constant values of the so called Mahalanobis distance. In addition, I have discussed a method to create these ellipses from values of the elements of the BVD’s (variance-) covariance… Read More »Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

BVD contour ellipses

Bivariate Normal Distribution – Mahalanobis distance and contour ellipses

I continue with my posts on Bivariate Normal Distributions [BVDs]. In this post we consider the exponent of a BVD’s probability density function [pdf]. This function is governed by a central matrix Σ-1, the inverse of the variance-covariance matrix of the BVD’s random vector. We define the so called Mahalanobis distance dm for BVD vectors. A constant value of the… Read More »Bivariate Normal Distribution – Mahalanobis distance and contour ellipses