Skip to content

Mathematics

Some math topics with relation to ML

Confidence ellipses based on covariance matrix

How to compute confidence ellipses – I – simple method based on the Pearson correlation coefficient

This post was motivated by a publication of Carsten Schelp [1]. Actually, a long time ago. I used his results in 2021, when I had to plot confidence ellipses during the analysis of statistical (multivariate) vector distributions produced a Machine Learning algorithm. So, all acknowledgements belong to Schelp’s work. However, his ideas have also triggered some of my own efforts… Read More »How to compute confidence ellipses – I – simple method based on the Pearson correlation coefficient

Confidence ellipses for an approximate BVD

Bivariate Normal Distribution – integrated probability up to a given Mahalanobis distance, the Chi-squared distribution and confidence ellipses

In previous posts of this blog we have discussed the general form of the probability density function [pdf] of a Bivariate Normal Distribution [BVD]. In this post we consider the integral over a BVD’s pdf up to a defined value of the Mahalanobis Distance. A given value of the latter defines an elliptic contour line of constant probability density. With… Read More »Bivariate Normal Distribution – integrated probability up to a given Mahalanobis distance, the Chi-squared distribution and confidence ellipses

Ellipses constructed from elements of a matrix defining a quadratic form

Ellipses via matrix elements – II – numerical tests of formulas

During the last posts, I have discussed properties of ellipses and ways to (re-) construct them from elements of a symmetric, invertible and positive-definite (2×2)-matrix, which defines a quadratic form. In the context of Machine Learning we often have to determine confidence ellipses from elements of a numerically determined variance-covariance matrix of statistical bivariate vector-distributions. Formulas relating the geometric properties… Read More »Ellipses via matrix elements – II – numerical tests of formulas

Cholesky decomposition of an ellipse-defining symmetric matrix

An ellipse can be defined via a symmetric, invertible and positive-definite (2×2)-matrix Aq. Such a matrix provides a quadratic form which in turn correlates the components of position vectors to points on an ellipse. This post shows that a Cholesky decomposition of the inverse of Aq provides a method to create an ellipse from a simple set of vectors which… Read More »Cholesky decomposition of an ellipse-defining symmetric matrix