Skip to content

Bivariate Normal Distributions

Confidence ellipses for an approximate BVD

Bivariate Normal Distribution – integrated probability up to a given Mahalanobis distance, the Chi-squared distribution and confidence ellipses

In previous posts of this blog we have discussed the general form of the probability density function [pdf] of a Bivariate Normal Distribution [BVD]. In this post we consider the integral over a BVD’s pdf up to a defined value of the Mahalanobis Distance. A given value of the latter defines an elliptic contour line of constant probability density. With… Read More »Bivariate Normal Distribution – integrated probability up to a given Mahalanobis distance, the Chi-squared distribution and confidence ellipses

Contour ellipses from Cholesky decomp ot various covariance matrices

Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

In my last post about Bivariate Normal Distributions [BVD] I have discussed why contour lines of a BVD’s probability density function [pdf] are concentric ellipses. These contour ellipses are defined by constant values of the so called Mahalanobis distance. In addition, I have discussed a method to create these ellipses from values of the elements of the BVD’s (variance-) covariance… Read More »Bivariate Normal Distributions – parameterization of contour ellipses in terms of the Mahalanobis distance and an angle

BVD contour ellipses

Bivariate Normal Distribution – Mahalanobis distance and contour ellipses

I continue with my posts on Bivariate Normal Distributions [BVDs]. In this post we consider the exponent of a BVD’s probability density function [pdf]. This function is governed by a central matrix Σ-1, the inverse of the variance-covariance matrix of the BVD’s random vector. We define the so called Mahalanobis distance dm for BVD vectors. A constant value of the… Read More »Bivariate Normal Distribution – Mahalanobis distance and contour ellipses

confidence ellipses of bivariate normal distribution

Eigenvalues and eigenvector of a positive-definite, real valued and symmetric matrix

A bivariate normal distributions [BVD] is governed by a central positive symmetric matrix. This matrix is a covariance matrix which describes the variances and correlation of the BVD’s marginal distributions. The contour lines of the probabilty density function of a BVD are ellipses. The half axes and the orientation of these ellipses are controlled by the eigenvalues and eigenvectors of… Read More »Eigenvalues and eigenvector of a positive-definite, real valued and symmetric matrix