PyQt Primitive 3 Interacting Threads V03

January 9, 2024

0.1 Purpose: Testing the use of background threads by a PyQt application.

Basic ideas: A PyQt App that starts a worker and a receiver thread in the background.
The worker thread creates plot and text which are supplemented in the receiver thread.
The signal/event mechanism of PyQt is used to create respective events which are
handled by slot-callbacks in the main thread. The PyQt app then updates a Figure
widget and a QTextEdit widget.

Documents

Basics https://stackoverflow.com/questions/21071448 /redirecting-stdout-and-
stderr-to-a-pyqt4-qtextedit-from-a-secondary-thread

Redirect simple: https://codereview.stackexchange.com/questions/208766/capturing-
stdout-in-a-qthread-and-update-gui

Stopping Qthreads : https://realpython.com/python-pyqt-qthread/

0.2 Imports

[1]: import time
#import gc # need some garbage collection
import sys # for Py{tbd
import math
import numpy as np
import queue
a useful module to redirect print-output
from contextlib import redirect_stdout

For plotting

import matplotlib

import matplotlib.backends

import matplotlib.pyplot as plt

from matplotlib.figure import Figure

from matplotlib.backends.backend_qtbagg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.backends.backend_qtbSagg import NavigationToolbar2QT as,
~NavigationToolbar

PyQt

from PyQt5 import QtWidgets, QtCore
from PyQt5.QtWidgets import =*

from PyQt5.QtGui import =*

from PyQt5.QtCore import *

0.3 Activate QtAgg-backend !!! Do NOT forget !!!

[2]: matplotlib.use('QtAgg')

0.4 Some helper classes

0.4.1 A stream object to redirect stdout

[3]: # The Stream Object which replaces the default stream
assoctated with sys.stdout
This object just puts data into a Python queue!
Any object with write method for a text sir is working
class WriteStream(object):
def __init__(self, queue_msgs):
self.queue_msgs = queue_msgs

When texts come from print statements
two (!) objects are added to the queue "text" + "\n"
def write(self, text):

self.queue_msgs.put (text)

0.4.2 Object to send sinus data together with signal

This is dome this way just for demonstration purposes

[4]: | class SinObj():
def __init__(self, pi_fact=1, col='red'):
self.pi_fact = pi_fact
col (= color) will later be overwritten
self.col = col
self.pi = np.pi
self .make_sins()

[5]:

[6]:

def make_sins(self):
self.sinx = np.arange(0, self.pi_fact*self.pi, 0.1)
self.siny = np.sin(self.sinx)

0.4.3 An object to define private signal types

Used to show that we can combine signals /slots between any threads

class Communicate(QObject):

sig_sinusl =
sig_sinus2 =

0.5 Objects for

pyqtSignal (object) # you can use Python types here!
pyqtSignal (object) # you can use Python types here!

background jobs

0.5.1 Main Object for Worker Thread

This class is for a worker object in the “worker thread”.

It peridically creates an object with sinus-data and puts it into a queue for a receiver object.

also sends a msg in form of a signal to the main window.

Worker Object [derived from QObject]
(It will later be run in a @Thread)
class MyWorker (QObject):

Static wvariables

Signals MUST be defined as static variables
Note: Signals could also be defined in the app's MainWindow
We would then emit them by using a reference to the window

Signal at start and regular end of the object's action

(= while loop) => will be send to gMainWin

signal_start_end = pyqtSignal(str)

Intermdiate msg-signals — will be sent directly to MainWindow

signal_msg =

pyqtSignal (str)

Constructor

def __init__(self, gMainWin, thrd

, num_iterations=20, time_sleep=1.0):

It

Parameters:

F - I e

qMainWin: A reference to the App's MainWindow

derived from @GMainWindow

thrd: A reference to the thread which the object gets affine to
num_tterations: maxz num of iterations of the while loop

time_sleep: sleep time between iterations

required here for demonstration purposes

Normally extensive operations consume the time

Constructor of parent class
Q0bject.__init__(self)

Main App window and threadd
self.gMainWin = gMainWin
self.thrd = thrd

Maximum number of iterations / sleep time
self .num = num_iterations
self.time_sleep = time_sleep

Number of elements in a "batch"

Here: Just used to send intermediate msg

Normally we would operate with real batches
of data, e.g. in ML scenarios

self .batch_size = gqMainWin.batch_size_worker

print ("Worker: Batch size = ", self.batch_size)

factor for sine period - will be raised
self.pi_fact = 0O
self.pi = np.pi

Queues - will be read by Receiver object

Queue for messages to Recetver - stdout-redirect
self.queue_msgs = gMainWin.queue_worker_msgs

Queue for sine data

self.queue_sins = gMainWin.queue_sins

Stream object to capture stdout
self.stream0Obj = WriteStream(self.queue_msgs)

Connect signals to callbacks
connect sart/end signals to callback in main window

self .signal_start_end.connect(gMainWin.callback_worker_start_end)
connect intermediate msg signal to callback in main window

self .signal_msg.connect(gMainWin.callback_for_worker_msgs)
get a time-reference + send start time

self.time_ref = gMainWin.time_thrds_start

self .start_time = time.perf_counter()

st_w = round((self.start_time - self.time_ref), 5)
msg = "\nWORKER: Started at " + str(st_w)
self.signal_start_end.emit (msg)

Method to stop Worker regularly (by stopping while loop)

Note : This method will be called directly; not wvia signal
def ende(self):

print ("WORKER: stopping ... ")

this stops the while loop and leads indirectly

to the invocation of othee methods

self .num = O

Method to print finmal msg and send a signal

Will be called directly - not via signal

def end_msg(self):
print ("WORKER: finished !")
end_time = round((time.perf_counter() - self.time_ref), 5)
msg = "\nWORKER: Finished at " + str(end_time)
self.signal_start_end.emit (msg)

Worker's main function. Gets started via signal from thread
Note: This method will be connected to a strat signal from the
(affine) thread => Should be marked as a SLOT in Python
@QtCore.pyqtSlot ()
def worker_run(self):
i=0
n_worker_batch = 0
Need a while loop as self.num will be changed dynamically
while i < self.num:
Print option to a nmotebook cell
print ("Worker: =", 1)

Create new sine-data with growing period number
self.pi_fact += 1

We create a full object for data transmission
(recommended; but in real world apps we may

mneed to trigger garbage collection sometimes)
sin_obj = Sin0bj(pi_fact=self.pi_fact)

put obj into queue for receiver
self.queue_sins.put(sin_obj)

Capture print() -> put text into queue for receiver
In parallel: After each "batch" send a msg to qMainWin
if iYself.batch_size ==

n_worker_batch += 1

print_text = "Worker i = " + str(i) + \
" :: w-batch = " + str(n_worker_batch)
print_text2 = "Worker To Rec.: " + print_text

Print something uncaptured to stdout
print (print_text)

! Note: Capturing will always print a "\n" ahead

! This leads to 2 entries in the queue:

"\n" and print-"text"

with redirect_stdout(self.streamObj) :
print(print_text?2)

Send signal to main window with msg-text
time_pt = round((time.perf_counter() - self.time_ref), 5)
msg = "\nWorker: Sine obj " + str(i) + \
" to queue (at " + str(time_pt) + ", batch: " + \
str(n_worker_batch) + ")"
self.signal_msg.emit (msg)

Pause during which other threads can work.

In real life cases we have ongoing data production
operations, which should be dome by libs/operations
bypassing the GIL (NUMPY, OpenBLAS, TF2, I/0)
time.sleep(self.time_sleep)

i+=1

Regular end of Worker

We directly set the status wvariable for a running worker
to False. This 1s harmless as fully controlled and no

conflicting events can occur
self.gMainWin.worker_is_running = False

Sequence of required steps to shutdown object AND thread
self.end_msg()
self.deletelater()

self.thrd.quit()

0.5.2 Main Object for Receiver Thread
This class is for a receiver object in the “receiver thread”.

It periodically reads out sine objects and msgs from two queues (filled by the Worker). It adds a
color to the sinus-data. It sends a signal with the data (including a msg) to the main window.The
Receiver is assumed to work faster than the Worker.

[7]: # Receiver Object [derived from QObject]

to be run in a @Thread

class MyReceiver(QObject):
Signals at start and regular end of the receiver object
will be send to gqMainkin
signal_start_end = pyqtSignal(str)
signal_finished = pyqtSignal()
Intermediate signals to emit — with sine data in object form
signal_data = QtCore.pyqtSignal (object)
signal_msg = QtCore.pyqtSignal(str)

Constructor
def __init__(self, gMainWin, thrd
, num_iterations=50, time_sleep=0.05):

Parameters:

gqMainWin: a reference to the Main Application Window

thrd: a reference to the thread which the object is affine to
num_iterations: maxz num of tterations of while loop

time_sleep: sleep time between iterations

Q0bject.__init__(self)

Main App window and thrd
self.gMainWin = gMainWin
self.thrd = thrd

Color list

self.1i_col = ['blue', 'red', 'orange', 'green', 'darkgreen'
, 'darkred', 'magenta', 'black']

Queue for messages from Worker - stdout-redirect

self.queue_msgs = gMainWin.queue_worker_msgs
Queue for sine data
self.queue_sins = gMainWin.queue_sins

maxzimum number of iterations and sleep time
self .num = num_iterations
self.time_sleep = time_sleep

Worker batch size

self .worker_batch_size = gMainWin.batch_size_worker

Receiever batch size

self .receiver_batch_size = gMainWin.batch_size_receiver

Connect signals to callbacks

connect msg signal to callback in the main window

self .signal_msg.connect(gMainWin.callback_for_receiver_msgs)

connect data signal to callback in the main window

self .signal_data.connect(gMainWin.callback_for_receiver_data)

connect signal for regular end of Receiver object

self .signal_start_end.connect(gMainWin.callback_receiver_start_end)
Special signal at end of the Receiver to stop Worker, too

self .signal_finished.connect(gMainWin.callback_receiver_finish)

get a time-reference

self.time_ref = gMainWin.time_thrds_start
self.start_time = time.perf_counter()

st r = round((self.start_time - self.time_ref), 5)
msg = "\nRECEIVER: Started at " + str(st_r)

self .signal_start_end.emit (msg)

Method to stop Receiver (by stopping while loop)

def ende(self):
print ("RECEIVER: Stopping ...")
this stops the while loop
self.num = O

Method to print final msg + send signal to qMainWin

def end_msg(self):
print ("RECEIVER: finished !")
end_time = round((time.perf_counter() - self.time_ref), 5)
msg = "\nRECEIVER: Finished at " + str(end_time)
self .signal_start_end.emit (msg)
self.signal_finished.emit ()

@QtCore.pyqtSlot() # gets started signal from thread
def receiver_run(self):

i=20

n_worker_batches = 0

n_receiver_batches = 0

n_sine_objects = 0

col rand = 1

while i < self.num:

#if 1410 == 0:
#print ("Recetver: loop i = ", 1)

Recetver works faster than Worker
gets data from 2 queues

Data from Worker msg queue
text_worker = ''
if self.queue_msgs.qsize() > O:
text_worker = self.queue_msgs.get()
slash_n = self.queue_msgs.get()
n_worker_batches += 1
print ("Receiver: 4 = ", 4, " :: n_w batch = ",
on_worker_batches)
print ("Receiver: 1 = ", 4, " :: text_worker = ", text_worker)
msg = "\nRECEIVER: Worker msg = " + \
text_worker
self.signal_msg.emit (msg)

print(self.queue.qsize())
if self.queue_sins.qgsize() > O:
n_sine_objects += 1
print ("From Receiver: n_sine = ", n_sine_objects)
sine_obj = self.queue_sins.get()
add color
sine_obj.col = self.li_col[col_rand]
send signal with dtaa obj to qMainWin
self.signal_data.emit(sine_obj)

if n_sine_objectsself.receiver_batch_size ==
col_rand = np.random.randint(0, len(self.li_col))
n_receiver_batches += 1
msg_batch = "\nRECEIVER: Rec-batch Nr " + \
str(n_receiver_batches) + "\n"
self .signal_msg.emit (msg_batch)

time.sleep(self.time_sleep)

i+=1
Regular end of Receiver

We directly set the status of the running Recetver to False
self.gMainWin.receiver_is_running = False

Sequence of steps to shutdown object and thread
self.end_msg()

self.deletelLater()

self.thrd.quit()

0.6 The Main application window

We always stop a thread by stopping the while loop of its assigned object AND triggering final
actions to deleteLater() the object and event loop (if started).

[8]: # A Man Window for our exzample application

An instance will produce a {t-window on the screen
class MyApp(QtWidgets.QMainWindow) :

Constructor
def __init__(self, max_worker_iters=20, max_receiver_iters=50):

initialization of parent class
QtWidgets.QMainWindow.__init__(self)

self.setWindowTitle("PyQt My-Threader")

Inittal size of @t window
#self.setMinimumSize (§Size (300, 300))
self.resize (960, 800)

some useful colors

self.col_red = QColor('red')
self.col_darkred = QColor (125, 0, 0)
self.col_darkblue = QColor(0, 0, 125)
self.col_darkgreen = QColor(0, 125, 0)
self.col_black = QColor(3, 3, 3)

Queues for data and msgs

Both queues will be read by the Recetver object
in the receiver thread

10

Queue for msgs from the worker thread
self .queue_worker_msgs = queue.Queue()

Queue for sinz/siny data from worker

self.queue_sins = queue.Queue()

Design of the Main Window

Central widget
self .mainWidget = QtWidgets.QWidget()
self.setCentralWidget (self .mainWidget)

VBOX-Layout

self .mainLayout = QVBoxLayout(self)

self .mainWidget.setLayout (self .mainLayout)
self .mainLayout.setContentsMargins(0, 0, 0, 0)
self .mainlLayout.setSpacing(12)

Groupbozl = Multiple Buttons / fized hetight

self.groupboxl = QGroupBox (" Buttons for Thread Control")
self.groupboxl.setStyleSheet ('font-weight:bold; ")
self.groupboxl.setFixedHeight (100)

self .mainLayout.addWidget (self.groupboxl)

self.vboxl = QHBoxLayout ()

self.groupboxl.setLayout (self.vbox1)

1st button: start threads

self .but_start_threads = QPushButton('start\nthreads', self)

self .but_start_threads.setMinimumSize (QSize (150, 50))

sizePolicy_but = QSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum)
self .but_start_threads.setSizePolicy(sizePolicy_but)
self.vboxl.addWidget (self.but_start_threads)

Stretch element
self.vboxl.insertStretch(1)

2nd button: stop threads

1st button: start threads

self .but_stop_threads = QPushButton('stop\nthreads', self)

self .but_stop_threads.setMinimumSize (QSize (150, 50))

sizePolicy_but = QSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum)
self .but_stop_threads.setSizePolicy(sizePolicy_but)
self.vboxl.addWidget (self.but_stop_threads)

11

Groupbox 2 = Figure Canvas for Matplotlid Figure

Otherwise you MUST destroy figure separatly

after closing the window via T on GUI-window

or win.close in Jupyterlabd

Alternative: catch the close event and close then
self.groupbox2 = QGroupBox(" Qt-Canvas for MPL-plot")
self.groupbox2.setStyleSheet ('font-weight:bold;"')

self .mainLayout.addWidget (self.groupbox2)

self .vbox2 = QVBoxLayout ()

self.groupbox2.setLayout (self.vbox2)

Create Matplotlidb figure
self.figl = Figure(figsize=[5., 3.], dpi=96)
Create azxz inside
self.ax1l = self.figl.add_subplot(111)
Assign @t FigureCanvas widget to figl-variable
self.canvasl = FigureCanvas(self.figl) # !important
Create interactive navigation toolbar widget
self .navl = NavigationToolbar(self.canvasl
, self.mainWidget)

Add figure and toolbar widgets to vboz_figl
self .vbox2.addWidget (self .navl)
self .vbox2.addWidget (self.canvasl)

11!l Important Otherwise the nav-bar will crash
It needs a drawn axz => Else mismatch with

figure.canvas and navi bar (z-position)
self.canvasl.draw()

Set wertical Stretchfactor
self .mainlayout.setStretchFactor(self.groupbox2, 1)

Groupbox 3 = Multiple (TextEdits

self.groupbox3 = QGroupBox (" Messages from thread-affine objects")
self.groupbox3.setStyleSheet ('font-weight:bold;"')
#self.groupboz3.setFizedHetght (250)

self.mainLayout.addWidget (self.groupbox3)

self.hbox3 = QHBoxLayout ()

self.groupbox3.setLayout (self.hbox3)

12

Display Ctrl messages

self.groupbox3_1 = QGroupBox(" Ctrl-Msgs")
self.groupbox3_1.setStyleSheet ('font-weight:bold;"')
self .vbox3_1 = QVBoxLayout ()
self.groupbox3_1.setLayout(self.vbox3_1)

self .qTextEdit_1 = QTextEdit() # For control msgs
self.qTextEdit_1.setReadOnly(True)

self .hbox3.addWidget (self.groupbox3_1)
self.vbox3_1.addWidget (self.qTextEdit_1)

Display Worker messages

self.groupbox3_2 = QGroupBox(" Worker-Msgs")
self.groupbox3_2.setStyleSheet('font-weight:bold; ")
self .vbox3_2 = QVBoxLayout ()
self.groupbox3_2.setLayout (self.vbox3_2)
self.qTextEdit_2 = QTextEdit() # For Worker msgs
self.qTextEdit_2.setReadOnly(True)

self .hbox3.addWidget (self.groupbox3_2)
self.vbox3_2.addWidget (self.qTextEdit_2)

Display Receiver messages

self.groupbox3_3 = QGroupBox(" Receiver-Msgs")
self.groupbox3_3.setStyleSheet('font-weight:bold; ")
self .vbox3_3 = QVBoxLayout ()
self.groupbox3_3.setLayout (self.vbox3_3)
self.qTextEdit_3 = QTextEdit() # For Reveiver msgs
self.qTextEdit_3.setReadOnly(True)

self .hbox3.addWidget (self.groupbox3_3)
self.vbox3_3.addWidget (self.qTextEdit_3)

equal horizontal stretch factor

self .hbox3.setStretchFactor(self.groupbox3_1, 1)

self .hbox3.setStretchFactor(self.groupbox3_2, 1)

self .hbox3.setStretchFactor(self.groupbox3_3, 1)

Set wertical Stretchfactor - realtive to

previous plot figure

self .mainLayout.setStretchFactor(self.groupbox3, 1)

Connect buttons to callbacks
self.but_start_threads.clicked.connect(self.start_threads)

self .but_stop_threads.clicked.connect(self.stop_threads)

Setting thread and worker parameters

13

self.threads = []

Max nums of tterations for Worker / Receiver
self .max_num_worker_iters = max_worker_iters
self .max_num_receiver_iters = max_receiver_iters

Batch sizes Worker / Recetever (here just for intermediate msgs)
self .batch_size_worker = 5
self .batch_size_receiver

5

Sleep times for Worker / Receiever [secs]
self.time_sleep_worker = 0.1
self.time_sleep_receiver = 0.05

Status of threads
self .worker_is_running = False
self.receiver_is_running = False

display @t-window on screen
self.show()

Function to start the two background threads
def start_threads(self):

Clear some objects

self.qTextEdit_1.clear() # For control msgs
self.qTextEdit_1.setFontWeight (QFont.Normal)
self .qTextEdit_1.setTextColor(self.col_black)

self.qTextEdit_2.clear() # For msgsfrom Worker Thread
self.qTextEdit_2.setFontWeight (QFont.Normal)
self.qTextEdit_2.setTextColor(self.col_black)

self.qTextEdit_3.clear () # For msgs from Receiver Thread
self.qTextEdit_3.setFontWeight (QFont.Normal)
self.qTextEdit_3.setTextColor(self.col_black)

self.queue_worker_msgs.queue.clear()
self.queue_sins.queue.clear()

A list for the opened threads
self.threads = []

14

Time reference
self .time_thrds_start = time.perf_counter()

self.worker thread = QThread()

Set up a worker object - we submit also the ref. to the main win
self .worker_obj = MyWorker (self
, self.worker_thread
, num_iterations=self.max_num_worker_iters
, time_sleep=self.time_sleep_worker)

Change thread affinity of worker object
self .worker_obj.moveToThread(self.worker_thread)

Start the objects function "worker_run"

We use an automatic start signal from the thread for this purpose
self .worker_thread.started.connect(self.worker_obj.worker_run)

End worker object and worker thread

F B e

Situation 1: Regular stop wvia the worker object

£ s The while loop in the worker obj is forced to stop =>
The thread should stop, too

All the required action ts done in the worker object.

Stituation 2: Stop of thread by external command
(7 POEEEEEEEE e.g. by some brutal intervention
E.g. the user closes the main window =>

®* R

Relevant is a close event which can be captured.

We always turn such situations into regular stops.

But we also need to delete the thread control objects

after the threads are stopped.

We also display a final message.

We use an automatic signal at the end of the threads operations to

HOH OB R R R

trigger these actions.

self.worker_thread.finished.connect(self.worker_thrd_finished)
last direct print related to worker

self.worker_thread. finished.connect(

lambda: print("Finished Worker Thread')

15

)
Start the worker thread

triggers the thread's run function, if existent
self.threads.append(self.worker_thread)
self.worker_thread.start()

self .worker_is_running = True

self .receiver_thread = QThread()

Set up a receiver object
self .receiver_obj = MyReceiver(self
, self.receiver_thread
, num_iterations=self.
—max_num_receiver_iters
, time_sleep= self.time_sleep_receiver)

self .receiver_obj.moveToThread(self.receiver_thread)
Start the objects function "receiver_run" when thread starts
self .receiver_thread.started.connect(self.receiver_obj.receiver_run)

finished
self.receiver_thread.finished.connect(self.receiver_thrd_finished)

self.receiver thread.finished.connect(
lambda: print("Finished Thread Receiver")

Start the recetver thread

triggers the thread's run function, if existent
self.threads.append(self.receiver_thread)
self.receiver_thread.start ()
self.receiver_is_running = True

Callbacks for worker and receiver threads

Method for regular start/end signal of Worker

16

msg will be written to 1st @TextEdit

@QtCore.pyqtSlot(str)

def callback_worker_start_end(self, text):
We write a msg to the Ctrl (TExtEdit_1
self.qTextEdit_1.moveCursor(QTextCursor.End)
self.qTextEdit_1.setFontWeight (QFont.Normal)
self.qTextEdit_1.setTextColor(self.col_black)
self.qTextEdit_1.insertPlainText (text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Method to handle Worker signals with msgs

will be written to the 2nd @TextEdit

@QtCore.pyqtSlot(str)

def callback_for_worker_msgs(self, text):
self.qTextEdit_2.moveCursor (QTextCursor.End)
self.qTextEdit_2.setFontWeight (QFont.Normal)
self.qTextEdit_2.setTextColor(self.col_black)
self.qTextEdit_2.insertPlainText (text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Method for regular start/end signal of Receiver

msg will be written to 1st @TextEdit

@QtCore.pyqtSlot(str)

def callback_receiver_start_end(self, text):
We write a msg to the Ctrl (TExtEdit_1
self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.setFontWeight (QFont.Normal)
self.qTextEdit_1.setTextColor(self.col_black)
self.qTextEdit_1.insertPlainText (text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Method for regular end signal of Reciever
=> Stop the Worker, too
@QtCore.pyqtSlot ()
def callback_receiver_finish(self):
Stop worker — <f still running
if self.worker_is_running:
self .worker_obj.ende()
We write a msg to the Ctrl (TExtEdit_1
msg = "\nStopping Worker due to end of Receiver"
self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.insertPlainText (msg)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Method to handle Receiver signals with msgs

17

will be written to the 3rd @TextEdit

@QtCore.pyqtSlot(str)

def callback_for_receiver_msgs(self, text):
self.qTextEdit_3.moveCursor (QTextCursor.End)
self.qTextEdit_3.setFontWeight (QFont.Normal)
self.qTextEdit_3.setTextColor(self.col_black)
self.qTextEdit_3.insertPlainText (text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Method for Receiver signals with sine data

@QtCore.pyqtSlot (object)

def callback_for_receiver_data(self, sine_obj):
sin_x = sine_obj.sinx
sin_y = sine_obj.siny
sine_col = sine_obj.col
Hier wetitermachen XXXX
self.ax11l.clear()
self.axl1l.plot(sin_x, sin_y, color=sine_col)
self.figl.canvas.draw()
self.figl.canvas.flush_events()

Stop threads - and related msgs

@QtCore.pyqtSlot ()
def worker_thrd_finished(self):
if self.worker_is_running:
print ("STRANGE END of WORKER THREAD!")

text = "\nWORKER: Thread finalized"

print(text)

self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.insertPlainText(text)
QtWidgets.QApplication.processEvents() #update gui for pyqt
self.worker_thread.deleteLater ()

self.threads.pop(0)

Reaction to finished Receiver thread

@QtCore.pyqtSlot ()
def receiver_thrd_finished(self):

18

if self.worker_is_running:
print ("STRANGE END of RECEIVER THREAD!")

text = "\nRECEIVER: Thread finalized"

print(text)

self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.insertPlainText(text)
QtWidgets.QApplication.processEvents() #update gui for pyqt
self.threads.pop(0)

Actively stop worker obj and thread

def stop_worker(self):
if self.worker_is_running:
self .worker_obj.ende()

Actively stop receiver obj and thread

def stop_receiver(self):
if self.receiver_is_running:
self.receiver_obj.ende()

Actively stop threads and worker/receiver objects

@QtCore.pyqtSlot ()
def stop_threads(self, b_how=0):
print("Start Finishing Threads")
An end of the Receiver will stop the Worker, too
self.stop_receiver()
The threads should come to an automatic end, too

if b_how ==

text = "\nInitialized end of threads (via button)"
else:

text = "\nInitialized end of threads"

self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.insertPlainText(text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

Closing main window by pressing X
This event must lead to a controlled end of
both the threads and their affine objects

@QtCore.pyqtSlot ()
def closeEvent(self, event):

19

An end of the Receiver will stop the Worker, too

text = "\nUser is closing Main Win "

print(text)

self.qTextEdit_1.moveCursor (QTextCursor.End)
self.qTextEdit_1.insertPlainText(text)
QtWidgets.QApplication.processEvents() #update gui for pyqt

self.stop_threads(b_how=1)
close figure
self.canvasl.deletelLater()

Wait a bit
time_sleep = 1.0
time.sleep(time_sleep)
accept event
event.accept ()

0.7 Execution code

[9]: max_worker_iters = 60
max_receiver_iters = 100

[10]: | # Create @QApplication and QWidget
app = MyApp(max_worker_iters=max_worker_iters
, max_receiver_iters=max_receiver_iters)

Start Finishing Threads
RECEIVER: Stopping ..

RECEIVER: finished !

WORKER: stopping ..

STRANGE END of RECEIVER THREAD!

RECEIVER: Thread finalized
Finished Thread Receiver
WORKER: finished !

WORKER: Thread finalized

User is closing Main Win
Start Finishing Threads

[]:

20

	Purpose: Testing the use of background threads by a PyQt application.
	Imports
	Activate QtAgg-backend !!! Do NOT forget !!!
	Some helper classes
	A stream object to redirect stdout
	Object to send sinus data together with signal
	An object to define private signal types

	Objects for background jobs
	Main Object for Worker Thread
	Main Object for Receiver Thread

	The Main application window
	Execution code

